

Python Hottop Client

pyHottop gives you the power to control your Hottop KN-8828b-2k+ roaster directly through python code. This library is meant to be used within applications and should not be used by itself to conduct a roast. Questions, comments or for support needs, please use the issues [https://github.com/9b/pyhottop/issues] page on Github.

Features

This library provides full control of the Hottop roaster. Built-in callback functionality allows you to build applications that decouple the processing logic from the library from the core of your application.

	
	Stream Hottop readings

	
	Easy-to-use callbacks that return readings

	Adjustable polling interval

	Human-readable settings

	Flexible collection of data

	Debugging interface

	
	Control the Hottop directly

	
	Heater settings

	Fan speeds

	Drum motor toggle

	Cooling motor toggle

	Solenoid (drum door) toggle

	Chaff tray (detection) reader

	
	Auto-discover roaster connection

	
	Loops over USB connections to find the proper serial

Code Documentation

	Getting Started

	Code Documentation
	Hottop Interface

	Control Process

	Exceptions

	Changelog
	2017-03-15

	2017-03-07

	2017-02-24

	2017-02-10

	2017-12-20

	2017-12-10

	2017-12-06

	2017-12-03

	2017-12-02

	2017-12-01

	2017-11-29

	2017-11-28

	2017-11-24

License

Copyright 2017 Split Key Coffee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

In order to interact with your Hottop roaster, you need to ensure your model has a USB-serial port which comes standard with the KN-8828b-2k+.

	Install the CP210x USB driver to read from the serial port:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

	Install the pyHotop module:

pip install pyhottop or python setup.py install

	Plug your Hottop roaster into your laptop.

	Test connectivity to the roaster by running the diagnostic utility:

pyhottop-test test

Code Documentation

Hottop Interface

This is the primary class that you will interact with when building applications for the Hottop roaster. This class will automatically spawn a threaded instance of the control process which will handle the core of the operations against the roaster.

	
class pyhottop.pyhottop.Hottop

	Object to interact and control the hottop roaster.

	Returns

	Hottop instance

	
_autodiscover_usb()

	Attempt to find the serial adapter for the hottop.

This will loop over the USB serial interfaces looking for a connection
that appears to match the naming convention of the Hottop roaster.

	Returns

	string

	
_callback(data)

	Processor callback to clean-up stream data.

This function provides a hook into the output stream of data from the
controller processing thread. Hottop readings are saved into a local
class variable for later saving. If the user has defined a callback, it
will be called within this private function.

	Parameters

	data (dict) – Information from the controller process

	Returns

	None

	
_derive_charge(config)

	Use a temperature window to identify the roast charge.

The charge will manifest as a sudden downward trend on the temperature.
Once found, we save it and avoid overwriting. The charge is needed in
order to derive the turning point.

	Parameters

	config (dict) – Current snapshot of the configuration

	Returns

	None

	
_derive_turning_point(config)

	Use a temperature window to identify the roast turning point.

Turning point relies on the charge being set first. We use the rolling
5-point window to measure slope. If we show a positive trend after
the charge, then the temperature has begun to turn.

	Parameters

	config (dict) – Current snapshot of the configuration

	Returns

	None

	
_init_controls()

	Establish a set of base controls the user can influence.

	Returns

	None

	
_logger()

	Create a logger to be used between processes.

	Returns

	Logging instance.

	
add_roast_event(event)

	Add an event to the roast log.

This method should be used for registering events that may be worth
tracking like first crack, second crack and the dropping of coffee.
Similar to the standard reading output from the roaster, manually
created events will include the current configuration reading, time and
metadata passed in.

	Parameters

	event (dict) – Details describing what happened

	Returns

	dict

	
connect(interface=None)

	Connect to the USB for the hottop.

Attempt to discover the USB port used for the Hottop and then form a
connection using the serial library.

	Returns

	bool

	Raises

	SerialConnectionError –

	
drop()

	Preset call to drop coffee from the roaster via thread signal.

This will set the following configuration on the roaster:
- drum_motor = 0
- heater = 0
- solenoid = 1
- cooling_motor = 1
- main_fan = 10

In order to power-off the roaster after dropping coffee, it’s best to
use the shutdown method. It’s assumed that cooling will occur for 5-10
minutes before shutting down.

	Returns

	None

	
end()

	End the roaster control process via thread signal.

This simply sends an exit signal to the thread, and shuts it down. In
order to stop monitoring, call the set_monitor method with false.

	Returns

	None

	
get_cooling_motor()

	Get the cooling motor config.

	Returns

	None

	
get_current_config()

	Get the current running config and state.

	Returns

	dict

	
get_drum_motor()

	Get the drum motor config.

	Returns

	None

	
get_fan()

	Get the fan config.

	Returns

	int [0-10]

	
get_heater()

	Get the heater config.

	Returns

	int [0-100]

	
get_main_fan()

	Get the main fan config.

	Returns

	None

	
get_monitor()

	Get the monitor config.

	Returns

	None

	
get_roast()

	Get the roast information.

	Returns

	list

	
get_roast_properties()

	Get the roast properties.

	Returns

	dict

	
get_roast_time()

	Get the roast time.

	Returns

	float

	
get_serial_state()

	Get the state of the USB connection.

	Returns

	dict

	
get_simulate()

	Get the simulation status.

	Returns

	bool

	
get_solenoid()

	Get the solenoid config.

	Returns

	None

	
reset()

	Reset the internal roast properties.

	Returns

	None

	
set_cooling_motor(cooling_motor)

	Set the cooling motor config.

	Parameters

	cooling_motor (bool) – Value to set the cooling motor

	Returns

	None

	Raises

	InvalidInput

	
set_drum_motor(drum_motor)

	Set the drum motor config.

	Parameters

	drum_motor (bool) – Value to set the drum motor

	Returns

	None

	Raises

	InvalidInput

	
set_fan(fan)

	Set the fan config.

	Parameters

	fan (int [0-10]) – Value to set the fan

	Returns

	None

	Raises

	InvalidInput

	
set_heater(heater)

	Set the heater config.

	Parameters

	heater (int [0-100]) – Value to set the heater

	Returns

	None

	Raises

	InvalidInput

	
set_interval(interval)

	Set the polling interval for the process thread.

	Parameters

	interval (int or float) – How often to poll the Hottop

	Returns

	None

	Raises

	InvalidInput

	
set_main_fan(main_fan)

	Set the main fan config.

	Parameters

	main_fan (int [0-10]) – Value to set the main fan

	Returns

	None

	Raises

	InvalidInput

	
set_monitor(monitor)

	Set the monitor config.

This module assumes that users will connect to the roaster and get
reading information _before_ they want to begin collecting roast
details. This method is critical to enabling the collection of roast
information and ensuring it gets saved in memory.

	Parameters

	monitor (bool) – Value to set the monitor

	Returns

	None

	Raises

	InvalidInput

	
set_roast_properties(settings)

	Set the properties of the roast.

	Parameters

	settings (dict) – General settings for the roast setup

	Returns

	None

	Raises

	InvalidInput

	
set_simulate(status)

	Set the simulation status.

	Parameters

	status (bool) – Value to set the simulation

	Returns

	None

	Raises

	InvalidInput

	
set_solenoid(solenoid)

	Set the solenoid config.

	Parameters

	solenoid (bool) – Value to set the solenoid

	Returns

	None

	Raises

	InvalidInput

	
start(func=None)

	Start the roaster control process.

This function will kick off the processing thread for the Hottop and
register any user-defined callback function. By default, it will not
begin collecting any reading information or saving it. In order to do
that users, must issue the monitor/record bit via set_monitor.

	Parameters

	func (function) – Callback function for Hottop stream data

	Returns

	None

Control Process

Due to the nature of continuously needing to poll the serial interface, a thread was required to handle interactions with the serial interface. It’s possible to use the multiprocessing module to handle this work, but when using this library inside of web server technology, multiprocessing often causes issues. Vanilla threads were used here to avoid interaction problems with co-routine or eventlet-based libraries.

	
class pyhottop.pyhottop.ControlProcess(conn, config, q, logger, callback=None)

	Primary processor to communicate with the hottop directly.

	Parameters

	
	conn (Serial instance) – Established serial connection to the Hottop

	config (dict) – Initial configurations settings

	q (Queue instance) – Shared queue to interact with the user interface

	logger (Logging instance) – Shared logger to keep continuity

	callback (function) – Optional callback function to stream results

	Returns

	ControlProces instance

	
_generate_config()

	Generate a configuration that can be sent to the Hottop roaster.

Configuration settings need to be represented inside of a byte array
that is then written to the serial interface. Much of the configuration
is static, but control settings are also included and pulled from the
shared dictionary.

	Returns

	Byte array of the prepared configuration.

	
_read_settings(retry=True)

	Read the information from the Hottop.

Read the settings from the serial interface and convert them into a
human-readable format that can be shared back to the end-user. Reading
from the serial interface will occasionally produce strange results or
blank reads, so a retry process has been built into the function as a
recursive check.

	Returns

	dict

	
_send_config()

	Send configuration data to the hottop.

	Returns

	bool

	Raises

	Generic exceptions if an error is identified.

	
_valid_config(settings)

	Scan through the returned settings to ensure they appear sane.

There are time when the returned buffer has the proper information, but
the reading is inaccurate. When this happens, temperatures will swing
or system values will be set to improper values.

	Parameters

	settings (dict) – Configuration derived from the buffer

	Returns

	bool

	
_validate_checksum(buffer)

	Validate the buffer response against the checksum.

When reading the serial interface, data will come back in a raw format
with an included checksum process.

	Returns

	bool

	
_wake_up()

	Wake the machine up to avoid race conditions.

When first interacting with the Hottop, the machine may not wake up
right away which can put our reader into a death loop. This wake up
routine ensures we prime the roaster with some data before starting
our main loops to read/write data.

	Returns

	None

	
drop()

	Register a drop event to begin the cool-down process.

	Returns

	None

	
run()

	Run the core loop of reading and writing configurations.

This is where all the roaster magic occurs. On the initial run, we
prime the roaster with some data to wake it up. Once awoke, we check
our shared queue to identify if the user has passed any updated
configuration. Once checked, start to read and write to the Hottop
roaster as long as the exit signal has not been set. All steps are
repeated after waiting for a specific time interval.

There are also specialized routines built into this function that are
controlled via events. These events are unique to the roasting process
and pre-configure the system with a configuration, so the user doesn’t
need to do it themselves.

	Returns

	None

	
shutdown()

	Register a shutdown event to stop interacting with the Hottop.

	Returns

	None

Exceptions

	
class pyhottop.pyhottop.InvalidInput

	Exception to capture invalid input commands.

	
class pyhottop.pyhottop.SerialConnectionError

	Exception to capture serial connection issues.

Changelog

Running list of changes to the library.

2017-03-15

	Bugfix: Capture error when validating byte sequence

2017-03-07

	Change: Removed non-python3 dict method

	Bugfix: Error in valid config checking

2017-02-24

	Change: Added logic to add event code to find a valid configuration before saving

2017-02-10

	Change: Added logic to turning point logic to avoid setting too soon

2017-12-20

	Feature: Added a mock service to simulate a roast without being connected to a machine

2017-12-10

	Bugfix: Removed the reset on start as it clears any properties set by the user

2017-12-06

	Change: Keep the drum on by default to avoid any stalls

2017-12-03

	Change: Wrap the buffer read and pull from cache if it continues to fail

	Change: Adjusted lower bound temperature to 50

	Feature: Reset all the roast settings when starting a roast

2017-12-02

	Bugfix: Called the proper logging object on buffer measurement

	Change: Added raw buffer responses to the event log

	Feature: Added a validate routine to the buffer read to account for inaccurate responses from the roaster

	Feature: Automatically derive charge and turning point events based on temperature data

2017-12-01

	Bugfix: Turned drum motor on when doing a cool-down to push beans out

2017-11-29

	Bugfix: Replaced existing extenal_temp with environment_temp

	Bugfix: Fixed issue with buffer retry loop where it was not being called

	Change: Adjusted default interval to 1 second to avoid buffer issues

	Change: Toggle serial connection if having trouble reading buffer

2017-11-28

	Change: Adjusted duration to be of format MM:SS instead of total seconds

	Change: Return roast state when toggling monitoring

2017-11-24

	Feature: several new methods for getting additional roast details

	Change: Refactored code related to tracking roast properties and timing

	Change: Updated documentation within the code

	Bugfix: when running with python3 due to queue library

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | R
 | S

_

 	
 	_autodiscover_usb() (pyhottop.pyhottop.Hottop method)

 	_callback() (pyhottop.pyhottop.Hottop method)

 	_derive_charge() (pyhottop.pyhottop.Hottop method)

 	_derive_turning_point() (pyhottop.pyhottop.Hottop method)

 	_generate_config() (pyhottop.pyhottop.ControlProcess method)

 	_init_controls() (pyhottop.pyhottop.Hottop method)

 	
 	_logger() (pyhottop.pyhottop.Hottop method)

 	_read_settings() (pyhottop.pyhottop.ControlProcess method)

 	_send_config() (pyhottop.pyhottop.ControlProcess method)

 	_valid_config() (pyhottop.pyhottop.ControlProcess method)

 	_validate_checksum() (pyhottop.pyhottop.ControlProcess method)

 	_wake_up() (pyhottop.pyhottop.ControlProcess method)

A

 	
 	add_roast_event() (pyhottop.pyhottop.Hottop method)

C

 	
 	connect() (pyhottop.pyhottop.Hottop method)

 	
 	ControlProcess (class in pyhottop.pyhottop)

D

 	
 	drop() (pyhottop.pyhottop.ControlProcess method)

 	(pyhottop.pyhottop.Hottop method)

E

 	
 	end() (pyhottop.pyhottop.Hottop method)

G

 	
 	get_cooling_motor() (pyhottop.pyhottop.Hottop method)

 	get_current_config() (pyhottop.pyhottop.Hottop method)

 	get_drum_motor() (pyhottop.pyhottop.Hottop method)

 	get_fan() (pyhottop.pyhottop.Hottop method)

 	get_heater() (pyhottop.pyhottop.Hottop method)

 	get_main_fan() (pyhottop.pyhottop.Hottop method)

 	
 	get_monitor() (pyhottop.pyhottop.Hottop method)

 	get_roast() (pyhottop.pyhottop.Hottop method)

 	get_roast_properties() (pyhottop.pyhottop.Hottop method)

 	get_roast_time() (pyhottop.pyhottop.Hottop method)

 	get_serial_state() (pyhottop.pyhottop.Hottop method)

 	get_simulate() (pyhottop.pyhottop.Hottop method)

 	get_solenoid() (pyhottop.pyhottop.Hottop method)

H

 	
 	Hottop (class in pyhottop.pyhottop)

I

 	
 	InvalidInput (class in pyhottop.pyhottop)

R

 	
 	reset() (pyhottop.pyhottop.Hottop method)

 	
 	run() (pyhottop.pyhottop.ControlProcess method)

S

 	
 	SerialConnectionError (class in pyhottop.pyhottop)

 	set_cooling_motor() (pyhottop.pyhottop.Hottop method)

 	set_drum_motor() (pyhottop.pyhottop.Hottop method)

 	set_fan() (pyhottop.pyhottop.Hottop method)

 	set_heater() (pyhottop.pyhottop.Hottop method)

 	set_interval() (pyhottop.pyhottop.Hottop method)

 	
 	set_main_fan() (pyhottop.pyhottop.Hottop method)

 	set_monitor() (pyhottop.pyhottop.Hottop method)

 	set_roast_properties() (pyhottop.pyhottop.Hottop method)

 	set_simulate() (pyhottop.pyhottop.Hottop method)

 	set_solenoid() (pyhottop.pyhottop.Hottop method)

 	shutdown() (pyhottop.pyhottop.ControlProcess method)

 	start() (pyhottop.pyhottop.Hottop method)

 nav.xhtml

 Table of Contents

 		
 Python Hottop Client

 		
 Getting Started

 		
 Code Documentation

 		
 Hottop Interface

 		
 Control Process

 		
 Exceptions

 		
 Changelog

 		
 2017-03-15

 		
 2017-03-07

 		
 2017-02-24

 		
 2017-02-10

 		
 2017-12-20

 		
 2017-12-10

 		
 2017-12-06

 		
 2017-12-03

 		
 2017-12-02

 		
 2017-12-01

 		
 2017-11-29

 		
 2017-11-28

 		
 2017-11-24

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

